\[
\huge{T = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}}
\]
\[
u = \begin{bmatrix}
-1\\
1
\end{bmatrix}
\]
\[
\begin{aligned}
Tu &= \begin{bmatrix}
-2\\
2
\end{bmatrix}
\end{aligned}
\]
\[
u = \begin{bmatrix}
-1\\
1
\end{bmatrix}
\]
\[
\begin{aligned}
Tu &= \begin{bmatrix}
-2\\
2
\end{bmatrix}\\\\
&= 2u
\end{aligned}
\]
\[
u = \begin{bmatrix}
1\\
1
\end{bmatrix}
\]
\[
\begin{aligned}
Tu &= \begin{bmatrix}
4\\
2
\end{bmatrix}
\end{aligned}
\]
\[
u = \begin{bmatrix}
1\\
1
\end{bmatrix}
\]
\[
\begin{aligned}
Tu &= \begin{bmatrix}
4\\
2
\end{bmatrix}\\\\
&\neq \lambda u
\end{aligned}
\]
For a linear transformation \(T\), a non-zero vector \(v\) is called an eigenvector with eigenvalue \(\lambda\) if:
For a linear transformation \(T\), a non-zero vector \(v\) is called an eigenvector with eigenvalue \(\lambda\) if:
\[
\boxed{\huge{T v = \lambda v}}
\]
For a linear transformation \(T\), a non-zero vector \(v\) is called an eigenvector with eigenvalue \(\lambda\) if:
\[
\boxed{\huge{T v = \lambda v}}
\]
\((\lambda, v)\) is called an eigenpair of \(T\)
For a matrix \(T\), a non-zero vector \(v\) is called an eigenvector with eigenvalue \(\lambda\) if:
\[
\boxed{\huge{T v = \lambda v}}
\]
\((\lambda, v)\) is called an eigenpair of \(T\)
\[
T = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
\left (2, \begin{bmatrix}-1\\1\end{bmatrix} \right)
\]
\[
\left (3, \begin{bmatrix}1\\0\end{bmatrix} \right)
\]
Why should an eigenvector be non-zero?
Why should an eigenvector be non-zero?
\[
T0 = \lambda 0
\]
Why should an eigenvector be non-zero?
\[
T0 = \lambda 0
\]
How many values can \(\lambda\) take?
If \(u\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), then what can you say about \(ku\)?
\[
\begin{aligned}
T(ku) &=
\end{aligned}
\]
If \(u\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), then what can you say about \(ku\)?
\[
\begin{aligned}
T(ku) &= k \cdot Tu
\end{aligned}
\]
If \(u\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), then what can you say about \(ku\)?
\[
\begin{aligned}
T(ku) &= k \cdot Tu\\\\
&= k \cdot \lambda u
\end{aligned}
\]
If \(u\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), then what can you say about \(ku\)?
\[
\begin{aligned}
T(ku) &= k \cdot Tu\\\\
&= k \cdot \lambda u\\\\
&= \lambda \cdot (ku)
\end{aligned}
\]
If \(u\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), then what can you say about \(ku\)?
\[
\begin{aligned}
T(ku) &= k \cdot Tu\\\\
&= k \cdot \lambda u\\\\
&= \lambda \cdot (ku)
\end{aligned}
\]
\(ku\) is an eigenvector of \(T\) with eigenvalue \(\lambda\), where \(k \neq 0\)
If \(u\) and \(v\) are eigenvectors of \(T\) with eigenvalue \(\lambda\), then what can you say about \(u + v\)?
\[
\begin{aligned}
T(u + v) &=
\end{aligned}
\]
If \(u\) and \(v\) are eigenvectors of \(T\) with eigenvalue \(\lambda\), then what can you say about \(u + v\)?
\[
\begin{aligned}
T(u + v) &= Tu + Tv
\end{aligned}
\]
If \(u\) and \(v\) are eigenvectors of \(T\) with eigenvalue \(\lambda\), then what can you say about \(u + v\)?
\[
\begin{aligned}
T(u + v) &= Tu + Tv\\\\
&= \lambda u + \lambda v
\end{aligned}
\]
If \(u\) and \(v\) are eigenvectors of \(T\) with eigenvalue \(\lambda\), then what can you say about \(u + v\)?
\[
\begin{aligned}
T(u + v) &= Tu + Tv\\\\
&= \lambda u + \lambda v\\\\
&= \lambda(u + v)
\end{aligned}
\]
If \(u\) and \(v\) are eigenvectors of \(T\) with eigenvalue \(\lambda\), then what can you say about \(u + v\)?
\[
\begin{aligned}
T(u + v) &= Tu + Tv\\\\
&= \lambda u + \lambda v\\\\
&= \lambda(u + v)
\end{aligned}
\]
\(u + v\) is an eigenvector of \(T\) with eigenvalue \(\lambda\)
\[
\huge{E = \{u\ \vert\ Tu = \lambda u, u \in \mathbb{R}^n \}}
\]