MLF | Lecture | Week-4

Lecture Outline

Characteristic Polynomial




How do we find the eigenvalues of a matrix \(A\)?



Characteristic Polynomial




\[ \begin{aligned} Ax &= \lambda x \end{aligned} \]



Characteristic Polynomial




\[ \begin{aligned} Ax &= \lambda x\\\\ Ax &= \lambda Ix\\\\ \end{aligned} \]



Characteristic Polynomial




\[ \begin{aligned} Ax &= \lambda x\\\\ Ax &= \lambda Ix\\\\ Ax - \lambda I x &= 0 \end{aligned} \]



Characteristic Polynomial




\[ \begin{aligned} Ax &= \lambda x\\\\ Ax &= \lambda Ix\\\\ Ax - \lambda I x &= 0\\\\ (A - \lambda I)x &= 0 \end{aligned} \]



Characteristic Polynomial



  • Let \(x\) be an eigenvector with eigenvalue \(\lambda\)

  • Then \((A - \lambda I)x = 0\)

  • \(x\) is in the nullspace of \(A - \lambda I\)

  • The linear transformation corresponding to \(A - \lambda I\) is not one-one

  • The linear transformation is not invertible

  • \(|A - \lambda I| = 0\)



Example



\[ A = \begin{bmatrix} 3 & 1\\ 0 & 2 \end{bmatrix} \]



Example



\[ A = \begin{bmatrix} 3 & 1\\ 0 & 2 \end{bmatrix} \]



\[ \begin{aligned} |A - \lambda I| &= 0\\\\ \end{aligned} \]

Example



\[ A = \begin{bmatrix} 3 & 1\\ 0 & 2 \end{bmatrix} \]



\[ \begin{aligned} |A - \lambda I| &= 0\\\\ \begin{vmatrix} 3 - \lambda & 1\\ 0 & 2 - \lambda \end{vmatrix} &= 0 \end{aligned} \]

Example



\[ A = \begin{bmatrix} 3 & 1\\ 0 & 2 \end{bmatrix} \]



\[ \begin{aligned} |A - \lambda I| &= 0\\\\ \begin{vmatrix} 3 - \lambda & 1\\ 0 & 2 - \lambda \end{vmatrix} &= 0\\\\ (3 - \lambda)(2 - \lambda) &= 0 \end{aligned} \]

Example



\[ A = \begin{bmatrix} 3 & 1\\ 0 & 2 \end{bmatrix} \]



\[ \begin{aligned} |A - \lambda I| &= 0\\\\ \begin{vmatrix} 3 - \lambda & 1\\ 0 & 2 - \lambda \end{vmatrix} &= 0\\\\ (3 - \lambda)(2 - \lambda) &= 0\\\\ \lambda &= 2, 3 \end{aligned} \]

Characteristic Polynomial



\[ |A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \]



Properties



  • The sum of the eigenvalues is equal to the trace of the matrix.
  • The product of the eigenvalues is equal to the determinant of the matrix.





Properties



  • The sum of the eigenvalues is equal to the trace of the matrix.
  • The product of the eigenvalues is equal to the determinant of the matrix.



  • \(\lambda_1 + \cdots + \lambda_n = \text{tr}(A)\)
  • \(\lambda_1 \cdots \lambda_n = |A|\)

Properties



\[ |A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \]



If we set \(\lambda = 0\), we have:



Properties



\[ |A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \]



If we set \(\lambda = 0\), we have:


\[ |A| = \lambda_1 \cdots \lambda_n \]

Properties



\[ |A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \]



If we set \(\lambda = 0\), we have:


\[ |A| = \lambda_1 \cdots \lambda_n \]

The determinant of a matrix is equal to the product of its eigenvalues.