How do we find the eigenvalues of a matrix \(A\)?
\[
\begin{aligned}
Ax &= \lambda x
\end{aligned}
\]
\[
\begin{aligned}
Ax &= \lambda x\\\\
Ax &= \lambda Ix\\\\
\end{aligned}
\]
\[
\begin{aligned}
Ax &= \lambda x\\\\
Ax &= \lambda Ix\\\\
Ax - \lambda I x &= 0
\end{aligned}
\]
\[
\begin{aligned}
Ax &= \lambda x\\\\
Ax &= \lambda Ix\\\\
Ax - \lambda I x &= 0\\\\
(A - \lambda I)x &= 0
\end{aligned}
\]
Let \(x\) be an eigenvector with eigenvalue \(\lambda\)
Then \((A - \lambda I)x = 0\)
\(x\) is in the nullspace of \(A - \lambda I\)
The linear transformation corresponding to \(A - \lambda I\) is not one-one
The linear transformation is not invertible
\(|A - \lambda I| = 0\)
\[
A = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
\begin{aligned}
|A - \lambda I| &= 0\\\\
\end{aligned}
\]
\[
A = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
\begin{aligned}
|A - \lambda I| &= 0\\\\
\begin{vmatrix}
3 - \lambda & 1\\
0 & 2 - \lambda
\end{vmatrix} &= 0
\end{aligned}
\]
\[
A = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
\begin{aligned}
|A - \lambda I| &= 0\\\\
\begin{vmatrix}
3 - \lambda & 1\\
0 & 2 - \lambda
\end{vmatrix} &= 0\\\\
(3 - \lambda)(2 - \lambda) &= 0
\end{aligned}
\]
\[
A = \begin{bmatrix}
3 & 1\\
0 & 2
\end{bmatrix}
\]
\[
\begin{aligned}
|A - \lambda I| &= 0\\\\
\begin{vmatrix}
3 - \lambda & 1\\
0 & 2 - \lambda
\end{vmatrix} &= 0\\\\
(3 - \lambda)(2 - \lambda) &= 0\\\\
\lambda &= 2, 3
\end{aligned}
\]
\[
|A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)
\]
\[
|A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)
\]
If we set \(\lambda = 0\), we have:
\[
|A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)
\]
If we set \(\lambda = 0\), we have:
\[
|A| = \lambda_1 \cdots \lambda_n
\]
\[
|A - \lambda I| = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)
\]
If we set \(\lambda = 0\), we have:
\[
|A| = \lambda_1 \cdots \lambda_n
\]
The determinant of a matrix is equal to the product of its eigenvalues.