\[
\begin{aligned}
D &= \begin{bmatrix}
a_1 & \\
& \ddots &\\
& & a_n
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
D &= \begin{bmatrix}
a_1 & \\
& \ddots &\\
& & a_n
\end{bmatrix}\\\\
&= \text{diag}(a_1, \cdots, a_n)
\end{aligned}
\]
\[
\begin{aligned}
De_1 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
1\\
0\\
0
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_2 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
1\\
0
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_3 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
0\\
1
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_1 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
1\\
0\\
0
\end{bmatrix}\\\\
&= \begin{bmatrix}
a_1\\
0\\
0
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_2 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
1\\
0
\end{bmatrix}\\\\
&= \begin{bmatrix}
0\\
a_2\\
0
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_3 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
0\\
1
\end{bmatrix}\\\\
&= \begin{bmatrix}
0\\
0\\
a_3
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
De_1 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
1\\
0\\
0
\end{bmatrix}\\\\
&= \begin{bmatrix}
a_1\\
0\\
0
\end{bmatrix}\\\\
&= a_1 \cdot e_1
\end{aligned}
\]
\[
\begin{aligned}
De_2 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
1\\
0
\end{bmatrix}\\\\
&= \begin{bmatrix}
0\\
a_2\\
0
\end{bmatrix}\\\\
&= a_2 \cdot e_2
\end{aligned}
\]
\[
\begin{aligned}
De_3 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
0\\
0\\
1
\end{bmatrix}\\\\
&= \begin{bmatrix}
0\\
0\\
a_3
\end{bmatrix}\\\\
&= a_3 \cdot e_3
\end{aligned}
\]
\[
\begin{aligned}
D^2 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
D^2 &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}\\\\
&= \begin{bmatrix}
a_1^2 & \\
& a_2^2 &\\
& & a_3^2
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
D^k &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \cdots \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
D^k &= \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix} \cdots \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}\\\\
&= \begin{bmatrix}
a_1^k & \\
& a_2^k &\\
& & a_3^k
\end{bmatrix}
\end{aligned}
\]
\[
D = \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\]
\[
|D| =
\]
\[
D = \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\]
\[
|D| = a_1 a_2a_3
\]
\[
D = \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\]
\[
D^{-1} =
\]
\[
D = \begin{bmatrix}
a_1 & \\
& a_2 &\\
& & a_3
\end{bmatrix}
\]
\[
\begin{aligned}
D^{-1} &= \begin{bmatrix}
\frac{1}{a_1} & \\
& \frac{1}{a_2} &\\
& & \frac{1}{a_3}
\end{bmatrix}
\end{aligned}
\]
The vectors in the standard basis are ————— of a diagonal matrix.
The vectors in the standard basis are eigenvectors of a diagonal matrix.
Definition-1: An \(n \times n\) matrix \(A\) is diagonalizable if there is a basis of eigenvectors for \(\mathbb{R}^n\)
Definition-1: An \(n \times n\) matrix \(A\) is diagonalizable if there is a basis of eigenvectors for \(\mathbb{R}^n\)
Ok, so what?
\[
Av_1 = \lambda_1v_1
\]
\[
Av_2 = \lambda_2v_2
\]
\[
Av_3 = \lambda_3v_3
\]
\[
A\begin{bmatrix}
\vert\\
v_1\\
\vert
\end{bmatrix} = \begin{bmatrix}
\vert\\
\lambda_1 v_1\\
\vert
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert\\
v_2\\
\vert
\end{bmatrix} = \begin{bmatrix}
\vert\\
\lambda_2 v_2\\
\vert
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert\\
v_3\\
\vert
\end{bmatrix} = \begin{bmatrix}
\vert\\
\lambda_3 v_3\\
\vert
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
\lambda_1 v_1 & \lambda_2 v_2 & \lambda_3 v_3\\
\vert & \vert & \vert
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
Q = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix}, D = \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
Q = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix}, D = \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A Q = QD
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
Q = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix}, D = \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A Q = QD
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
Q = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix}, D = \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A Q = QD
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
A = QDQ^{-1}
\]
\[
A\begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix} = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert
\end{bmatrix} \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
Q = \begin{bmatrix}
\vert & \vert & \vert\\
v_1 & v_2 & v_3\\
\vert & \vert & \vert\\
\end{bmatrix}, D = \begin{bmatrix}
\lambda_1 & &\\
& \lambda_2 & \\
& & \lambda_3
\end{bmatrix}
\]
\[
A Q = QD
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
A = QDQ^{-1}
\]
\(A\) and \(D\) are similar matrices
Definition-2: An \(n \times n\) matrix \(A\) is diagonalizable if it is similar to a diagonal matrix.
\[
A = Q D Q^{-1}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &=
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &= |QDQ^{-1} - \lambda I|\\\\
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &= |QDQ^{-1} - \lambda I|\\\\
&= |QDQ^{-1} - \lambda Q Q^{-1}|
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &= |QDQ^{-1} - \lambda I|\\\\
&= |QDQ^{-1} - \lambda Q Q^{-1}|\\\\
&= |Q(D - \lambda I)Q^{-1}|
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &= |QDQ^{-1} - \lambda I|\\\\
&= |QDQ^{-1} - \lambda Q Q^{-1}|\\\\
&= |Q(D - \lambda I)Q^{-1}|\\\\
&= |Q| \cdot |D - \lambda I| \cdot |Q^{-1}|
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
|A - \lambda I| &= |QDQ^{-1} - \lambda I|\\\\
&= |QDQ^{-1} - \lambda Q Q^{-1}|\\\\
&= |Q(D - \lambda I)Q^{-1}|\\\\
&= |Q| \cdot |D - \lambda I| \cdot |Q^{-1}|\\\\
&= |D - \lambda I|
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
A^k &=
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
A^k &= (QDQ^{-1})^k
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
A^k &= (QDQ^{-1})^k\\\\
&= \underbrace{(QDQ^{-1}) \cdots (QDQ^{-1})}_{k \text{ blocks}}
\end{aligned}
\]
\[
A = Q D Q^{-1}
\]
\[
\begin{aligned}
A^k &= (QDQ^{-1})^k\\\\
&= \underbrace{(QDQ^{-1}) \cdots (QDQ^{-1})}_{k \text{ blocks}}\\\\
&= Q D^k Q^{-1}
\end{aligned}
\]
The following are equivalent definitions of diagonalizablity. A matrix \(A\) is diagonalizable if