What is an application of diagonalization?
\[
0, 1, 1, 2, 3, 5, 8, \cdots
\]
\(F_k\) is the \(k^{th}\) term of the sequence
\[
F_{k + 2}
\]
\[
F_{k + 2} = F_{k + 1} + F_{k}
\]
\[
\begin{aligned}
F_{k + 2} &= F_{k + 1} + F_{k}\\\\
F_{k + 1} &= F_{k + 1}
\end{aligned}
\]
\[
\begin{aligned}
F_{k + 2} &= 1 \cdot F_{k + 1} + 1 \cdot F_{k}\\\\
F_{k + 1} &= 1 \cdot F_{k + 1} + 0 \cdot F_{k}
\end{aligned}
\]
\[
\begin{bmatrix}
F_{k + 2}\\
F_{k + 1}
\end{bmatrix} = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
\begin{bmatrix}
F_{k + 2}\\
F_{k + 1}
\end{bmatrix} = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
\begin{bmatrix}
F_{k + 2}\\
F_{k + 1}
\end{bmatrix} = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}, u_k = \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
\begin{bmatrix}
F_{k + 2}\\
F_{k + 1}
\end{bmatrix} = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}, u_k = \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
u_{k + 1} = A u_k
\]
\[
u_{k + 1} = A u_k
\]
\[
u_{k + 1} = A u_k
\]
\[ u_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix} \]
\[
u_{k + 1} = A u_k
\]
\[
u_0 = \begin{bmatrix}
1\\
0
\end{bmatrix}
\]
\[
u_1 = Au_0
\]
\[
u_{k + 1} = A u_k
\]
\[
u_0 = \begin{bmatrix}
1\\
0
\end{bmatrix}
\]
\[
u_1 = Au_0
\]
\[
\begin{aligned}
u_2 &= Au_1
\end{aligned}
\]
\[
u_{k + 1} = A u_k
\]
\[
u_0 = \begin{bmatrix}
1\\
0
\end{bmatrix}
\]
\[
u_1 = Au_0
\]
\[
\begin{aligned}
u_2 &= Au_1\\
&= A^2 u_0
\end{aligned}
\]
\[
u_{k + 1} = A u_k
\]
\[
u_0 = \begin{bmatrix}
1\\
0
\end{bmatrix}
\]
\[
u_1 = Au_0
\]
\[
\begin{aligned}
u_2 &= A^2u_0
\end{aligned}
\]
\[
u_{k + 1} = A u_k
\]
\[
u_0 = \begin{bmatrix}
1\\
0
\end{bmatrix}
\]
\[
u_1 = Au_0
\]
\[
\begin{aligned}
u_k &= A^ku_0
\end{aligned}
\]
\[
\huge{u_k = A^k u_0}
\]
\[
\huge{u_k = A^k u_0}
\]
How do we compute \(A^k\)?
\[
\huge{u_k = A^k u_0}
\]
How do we compute \(A^k\)?
Diagonalization
\[
A = \begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}
\]
Is \(A\) diagonalizable?
\[ \begin{aligned} \quad \ \ \begin{vmatrix} 1 - \lambda & 1\\ 1 & -\lambda \end{vmatrix} &= 0 \end{aligned} \]
\[ \begin{aligned} \begin{vmatrix} 1 - \lambda & 1\\ 1 & -\lambda \end{vmatrix} &= 0\\\\\\ (1 - \lambda)(-\lambda) - 1 &= 0 \end{aligned} \]
\[ \begin{aligned} \begin{vmatrix} 1 - \lambda & 1\\ 1 & -\lambda \end{vmatrix} &= 0\\\\\\ (1 - \lambda)(-\lambda) - 1 &= 0\\\\\\ \lambda^2 - \lambda - 1 &= 0 \end{aligned} \]
\[ \begin{aligned} \begin{vmatrix} 1 - \lambda & 1\\ 1 & -\lambda \end{vmatrix} &= 0\\\\\\ (1 - \lambda)(-\lambda) - 1 &= 0\\\\\\ \lambda^2 - \lambda - 1 &= 0\\\\ \end{aligned} \]
\[
\lambda_1 = \cfrac{1 - \sqrt{5}}{2}, \lambda_2 = \cfrac{1 + \sqrt{5}}{2}
\]
\[
\begin{aligned}
\quad \quad\ \ (A - \lambda I)v &= 0\\\\
\end{aligned}
\]
\[
\begin{aligned}
(A - \lambda I)v &= 0\\\\
\begin{bmatrix}
1 - \lambda & 1\\
1 & -\lambda
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix} &= \begin{bmatrix}
0\\
0
\end{bmatrix}\\\\
\end{aligned}
\]
\[
\begin{aligned}
(A - \lambda I)v &= 0\\\\
\begin{bmatrix}
1 - \lambda & 1\\
1 & -\lambda
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix} &= \begin{bmatrix}
0\\
0
\end{bmatrix}\\\\
\cfrac{v_1}{v_2} &= \lambda
\end{aligned}
\]
\[
\begin{aligned}
(A - \lambda I)v &= 0\\\\
\begin{bmatrix}
1 - \lambda & 1\\
1 & -\lambda
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix} &= \begin{bmatrix}
0\\
0
\end{bmatrix}\\\\
\cfrac{v_1}{v_2} &= \lambda
\end{aligned}
\]
\[
\begin{bmatrix}
\lambda_1\\
1
\end{bmatrix}, \begin{bmatrix}
\lambda_2\\
1
\end{bmatrix}
\]
\[
\begin{aligned}
(A - \lambda I)v &= 0\\\\
\begin{bmatrix}
1 - \lambda & 1\\
1 & -\lambda
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix} &= \begin{bmatrix}
0\\
0
\end{bmatrix}\\\\
\cfrac{v_1}{v_2} &= \lambda
\end{aligned}
\]
\[
\begin{bmatrix}
\lambda_1\\
1
\end{bmatrix}, \begin{bmatrix}
\lambda_2\\
1
\end{bmatrix}
\]
We have two linearly independent eigenvectors.
\[ A = \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix} \]
\[
Q = \begin{bmatrix}
\lambda_1 & \lambda_2\\
1 & 1
\end{bmatrix}
\]
\[
D = \begin{bmatrix}
\lambda_1 & 0\\
0 & \lambda_2
\end{bmatrix}
\]
\[ A = \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix} \]
\[
Q = \begin{bmatrix}
\lambda_1 & \lambda_2\\
1 & 1
\end{bmatrix}
\]
\[
D = \begin{bmatrix}
\lambda_1 & 0\\
0 & \lambda_2
\end{bmatrix}
\]
\[
A = QDQ^{-1}
\]
\[ A = \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix} \]
\[
Q = \begin{bmatrix}
\lambda_1 & \lambda_2\\
1 & 1
\end{bmatrix}, Q^{-1} = \cfrac{1}{\lambda_1 - \lambda_2}\begin{bmatrix}
1 & -\lambda_2\\
-1 & \lambda_1
\end{bmatrix}
\]
\[
D = \begin{bmatrix}
\lambda_1 & 0\\
0 & \lambda_2
\end{bmatrix}
\]
\[
A = QDQ^{-1}
\]
\[
u_k = A^k u_0
\]
\[
u_k = A^k u_0
\]
\[
\begin{aligned}
u_k &= (QDQ^{-1})^k u_0
\end{aligned}
\]
\[
u_k = A^k u_0
\]
\[
\begin{aligned}
u_k &= (QDQ^{-1})^k u_0\\\\
&= Q D^k Q^{-1} u_0
\end{aligned}
\]
\[
\begin{aligned}
u_k &= Q D^k Q^{-1} u_0 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\ \
\end{aligned}
\]
\[
\begin{aligned}
u_k &= Q D^k Q^{-1} u_0\\\\
&= \cfrac{1}{\lambda_1 - \lambda_2} \begin{bmatrix}
\lambda_1 & \lambda_2\\
1 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1^k & 0\\
0 & \lambda_2^k
\end{bmatrix} \begin{bmatrix}
1 & -\lambda_2\\
-1 & \lambda_1
\end{bmatrix} \begin{bmatrix}
1\\
0
\end{bmatrix}
\end{aligned}
\]
\[
\begin{aligned}
u_k &= Q D^k Q^{-1} u_0\\\\
&= \cfrac{1}{\lambda_1 - \lambda_2} \begin{bmatrix}
\lambda_1 & \lambda_2\\
1 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1^k & 0\\
0 & \lambda_2^k
\end{bmatrix} \begin{bmatrix}
1 & -\lambda_2\\
-1 & \lambda_1
\end{bmatrix} \begin{bmatrix}
1\\
0
\end{bmatrix}\\\\
&= \cfrac{1}{\lambda_1 - \lambda_2} \begin{bmatrix}
\lambda_1^{k + 1} - \lambda_2^{k + 1}\\
\lambda_1^{k} - \lambda_2^{k}
\end{bmatrix}
\end{aligned}
\]
\[
u_k = \cfrac{1}{\lambda_1 - \lambda_2} \begin{bmatrix}
\lambda_1^{k + 1} - \lambda_2^{k + 1}\\
\lambda_1^{k} - \lambda_2^{k}
\end{bmatrix}
\]
\[
u_k = \begin{bmatrix}
F_{k + 1}\\
F_{k}
\end{bmatrix}
\]
\[
F_k = \cfrac{1}{\lambda_1 - \lambda_2} \left(\lambda_1^k - \lambda_2^k \right)
\]
\[
\lambda_1 = \cfrac{1 - \sqrt{5}}{2}, \lambda_2 = \cfrac{1 + \sqrt{5}}{2}
\]
\[
F_k = \cfrac{1}{\lambda_1 - \lambda_2} \left(\lambda_1^k - \lambda_2^k \right)
\]
\[
\boxed{F_k = \cfrac{1}{\sqrt{5}} \left[ \left(\cfrac{1 + \sqrt{5}}{2} \right)^k - \left(\cfrac{1 - \sqrt{5}}{2} \right)^k \right]}
\]