\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[ Q = \begin{bmatrix} \vert & & \vert\\ v_1 & \cdots & v_n\\ \vert & & \vert \end{bmatrix} \]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
Q = \begin{bmatrix}
\vert & & \vert\\
v_1 & \cdots & v_n\\
\vert & & \vert
\end{bmatrix}
\]
\[
Q^T Q = \begin{bmatrix}
- & v_1 & -\\
& \vdots & \\
- & v_n & -
\end{bmatrix} \begin{bmatrix}
\vert & & \vert\\
v_1 & \cdots & v_n\\
\vert & & \vert
\end{bmatrix}
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
Q = \begin{bmatrix}
\vert & & \vert\\
v_1 & \cdots & v_n\\
\vert & & \vert
\end{bmatrix}
\]
\[
Q^T Q = I
\]
\[
\beta = \{v_1, \cdots, v_n\}
\]
\[
Q = \begin{bmatrix}
\vert & & \vert\\
v_1 & \cdots & v_n\\
\vert & & \vert
\end{bmatrix}
\]
\[
Q^T Q = I
\]
\[
Q^{-1} = Q^T
\]
\[
A = QDQ^{-1}
\]
\[
A = QDQ^T
\]
\[
A = QDQ^T
\]
\[
A^T =
\]
\[
A = QDQ^T
\]
\[
A^T = A
\]
If a matrix is orthogonally diagonalizable, it is symmetric.
If a matrix is orthogonally diagonalizable, it is symmetric.
If a matrix is symmetric, is it orthogonally diagonalizable?
If a matrix is orthogonally diagonalizable, it is symmetric.
If a matrix is symmetric, is it orthogonally diagonalizable?
Week-5