Olympiad
 Time: 1.30 Hour
 Stat-Math Academic Cell

1. Let a, b, c, d and e be the positive integers such that $a b c d e=a+b+c+d+e$, where abcde denotes the product of a, b, c, d, and e. Find the maximum possible value of $\max \{a, b, c, d, e\}$.
2. For any sequence of real numbers $A=\left\{a_{n} \mid n \in \mathbb{N} \backslash\{0\}\right\}$, define $\Delta A=\left\{a_{n+1}-a_{n} \mid n \in \mathbb{N} \backslash\{0\}\right\}$. Supoose all the term of the sequence $\Delta(\Delta A)$ are 1 , and $a_{19}=a_{92}=0$. Find the value of a_{1}.
[Answer: 819]
3. Let $\lfloor x\rfloor$ denote the largest integer less than or equal to x. Find the value of

$$
\left\lfloor\frac{1}{4}\right\rfloor+\left\lfloor\frac{1}{4}+\frac{1}{200}\right\rfloor+\left\lfloor\frac{1}{4}+\frac{2}{200}\right\rfloor+\ldots+\left\lfloor\frac{1}{4}+\frac{199}{200}\right\rfloor
$$

[Answer: 50]
4. Find the number of integer solutions of the equation $x_{1}+x_{2}+x_{3}+x_{4}=48$ with the conditions such that $x_{1}>5, x_{2}>6, x_{3}>7$, and $x_{4}>8$.
[Answer: 1330]
5. Find the number of real solutions of the equation

$$
\sqrt{x^{2}+4 x+4}=x^{2}+3 x-6
$$

[Answer: 2]
6. Find the possible number of pairs (x, y), where x and y both are real numbers and which satisfy the system of equations:
[Answer: 2]

$$
\begin{aligned}
& x^{3}+y^{3}=1 \\
& x^{4}+y^{4}=1
\end{aligned}
$$

7. Find the number of positive integer x which satisfy the inequality

$$
\frac{x-1}{x-2} \leq \frac{x-2}{x-1}
$$

[Answer: 0]
8. Evaluate the largest integer less than or equal to the number s, where

$$
s=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \frac{1}{\sqrt{10000}}
$$

[Answer: 197]
9. Find the value of n for which

$$
\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\frac{2 a b}{a+b}
$$

where $a \neq b$.
[Answer: -1]
10. Let $X=\{n \in \mathbb{N} \mid n \geq 8\}$. Let $f: X \rightarrow \mathbb{R}$ such that $f(x+y)=f(x y)$, for all $x \geq 4, y \geq 4$ and $f(8)=9$. Determine $f(9)$.
[Answer: 9]
11. If 3 numbers are selected from the first 15 natural numbers (not including 0), then what is the probability that the numbers are in A.P? Give answer up to 3 correct decimal places.
[Answer: 0.107 (Correct range: 0.105-0.109)]
12. Find the number of natural numbers $x>3$ such that $x-3$ divides $x^{3}-3$. [Answer: 8]
13. Find the number of pairs (x, y), where x and y both are natural numbers (not including 0) which satisy the equation $2^{x}+1=y^{2}$.
[Answer: 1]
14. Let a and b be two consecutive integers selected from the first 1000 natural numbers, not including 0 . What is the probability of $\sqrt{a^{2}+b^{2}+a^{2} b^{2}}$ being an odd positive integer? Give answer up to 3 correct decimal places.
[Answer: 1.000]
15. Triangle $A B C$ has a right angle at C. The internal bisectors of angles $B A C$ and $A B C$ meet $B C$ and $C A$ at P and Q, respectively. The points M and N are the feet of the perpendiculars from P and Q to AB . Find angle MCN (in degrees).
(Enter the numerical value as your answer. e.g. Suppose your answer is 60°, then enter 60 as your answer.)
[Answer: 45]
16. Let $S=\{(x, y, z) \mid x, y, z$ are non-zero natural numbers satisfying $x y+y z+z x=2+$ $x y z\}$. Find the cardinality of the set S.
[Answer: 7]
17. Let a, b, c be non-zero real numbers such that

$$
a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}
$$

What is the value of $|a b c|$?
[Answer: 1]
18. Find the least positive integer m such that for all positive integers n we have

$$
\binom{2 n}{n}^{\frac{1}{n}}<m
$$

[Answer: 4]
19. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{2}{4^{x}+2}$. Find the value of

$$
f\left(\frac{1}{2023}\right)+f\left(\frac{2022}{2023}\right)
$$

[Answer: 1]
20. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
i) $f(x) \leq x$ for all $x \in \mathbb{R}$.
ii) $f(x+y) \leq f(x)+f(y)$ for all $x, y \in \mathbb{R}$.

Determine $f(2022)$.
[Answer: 2022]

