Problem-21

rank
LU decomposition

Question

Consider the following matrix: \[ \begin{equation*} A = \begin{bmatrix} 1 & 2 & 0 & 1\\ 2 & 4 & 1 & 4\\ 3 & 6 & 3 & 9 \end{bmatrix} \end{equation*} \]

  1. Find the rank of \(A\).

  2. Find a LU decomposition of \(A\) if it exists.

Solution

Let us compute the row-echelon form of \(A\):

Step-1: \(R_2 \rightarrow R_2 - 2R_1\)

\[ \begin{bmatrix} 1 & 2 & 0 & 1\\ 2 & 4 & 1 & 4\\ 3 & 6 & 3 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 3 & 6 & 3 & 9 \end{bmatrix} \]

Step-2: \(R_3 \rightarrow R_3 - 3R_1\)

\[ \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 3 & 6 & 3 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 3 & 6 \end{bmatrix} \]

Step-3: \(R_3 \rightarrow R_3 - 3R_2\)

\[ \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Since there are two non-zero rows in the REF of \(A\), the rank is \(\boxed{2}\). Now for the LU decomposition. We already have \(U\). It is the row echelon from of \(A\). To get \(L\), we start with the identity matrix, invert each of the three steps and perform them in reverse order:

Step-1: \(R_2 \rightarrow R_2 + 3R_2\)

\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 3 & 1 \end{bmatrix} \] Step-2: \(R_3 \rightarrow R_3 + 3R_1\)

\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 3 & 3 & 1 \end{bmatrix} \] Step-3: \(R_2 \rightarrow R_2 + 2R_1\) \[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 3 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 3 & 1 \end{bmatrix} \]

We have \(A = LU\): \[ \boxed{\begin{bmatrix} 1 & 2 & 0 & 1\\ 2 & 4 & 1 & 4\\ 3 & 6 & 3 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0 \end{bmatrix}} \]

Here \(U\) is just a row-echelon form of \(A\) and not an upper triangular matrix.


Here is a loose argument as to why this algorithm works. Consider \(E_1, \cdots, E_k\) as the sequence of elementary operations that convert \(A\) to \(U\). Then:

\[ \begin{aligned} E_k \cdots E_1 A &= U\\ E_k \cdots E_1 A &= IU\\ A &= (E_1^{-1} \cdots E_k^{-1} I) U\\ A &= LU \end{aligned} \]

There are several points that have not been clarified. For one, is \(E_{1}^{-1} \cdots E_{k}^{-1}\) a lower triangular matrix? Does every matrix have a LU decomposition? These issues will be taken up in a separate post.